FCBS CARBON

Understanding carbon from the outset

An introduction to FCBS CARBON

SPACES Virtual Conference 17 June 2021

Feilden Clegg Bradley Studios to I find and

AJ100 Client Choice Award **RIBA Stirling Prize** Queen's Award for Sustainable Development

54RIBA 5 RIBA Sustainability 32 Civic Trust Awards 1 Civic Trust Special Award for Education 3 Civic Trust Special Awards for Sustainability 16 Housing Design Awards 1 Europa Nostra Award for Conservation **10 Architect of the Year Awards** 3 AJ100 Sustainable Practice of the Year Awards 2 New London Architecture Awards 4 Building Awards 5 Building Construction Industry Awards

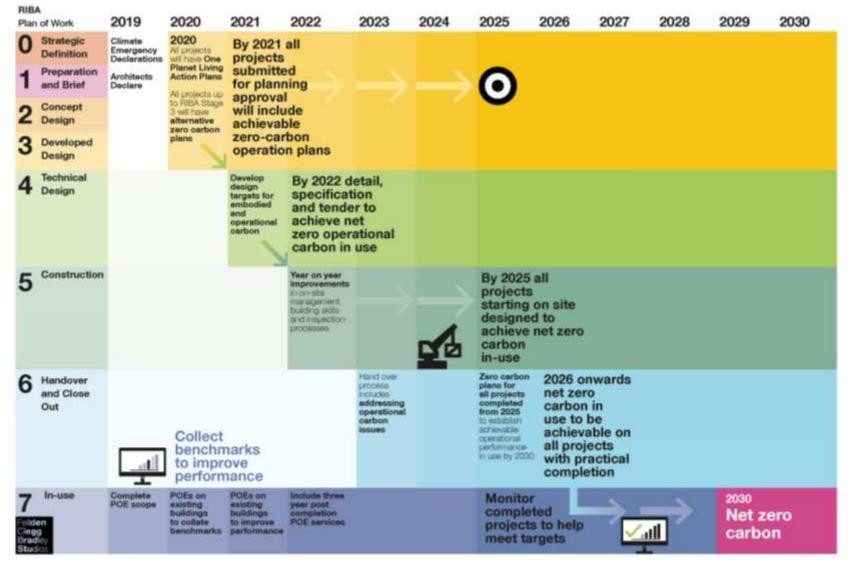
Architects Declare

11 Commitments to mitigate climate change

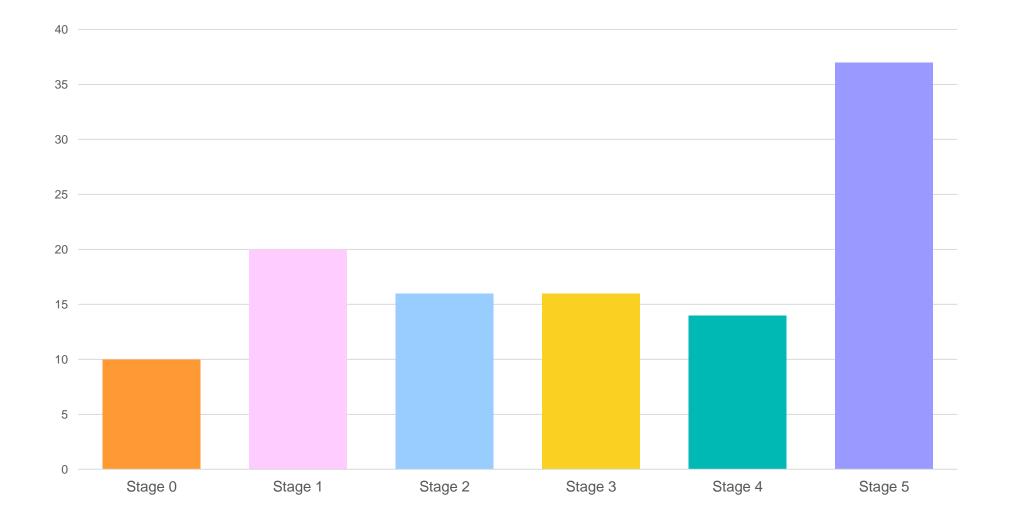
FCBStudios a founding signatory

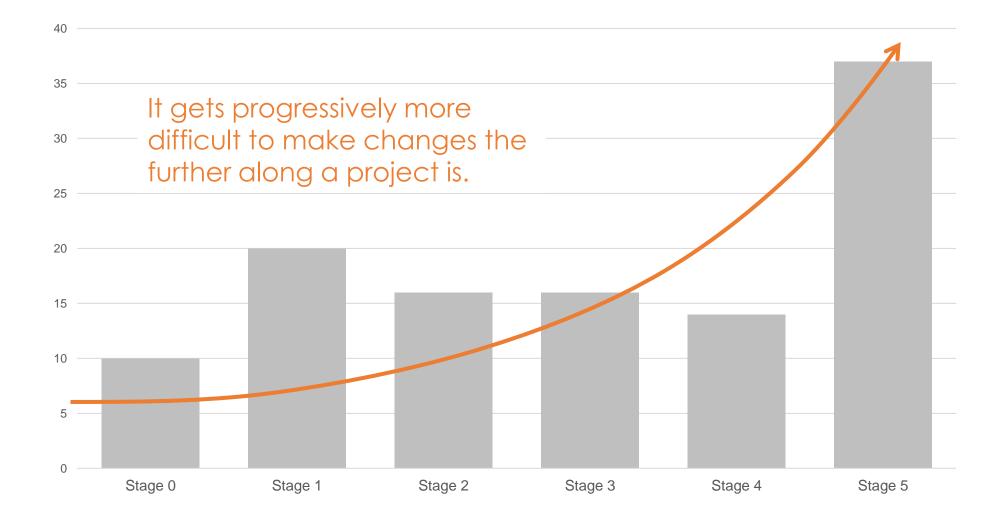
950+ have signed up

A commitment to share knowledge

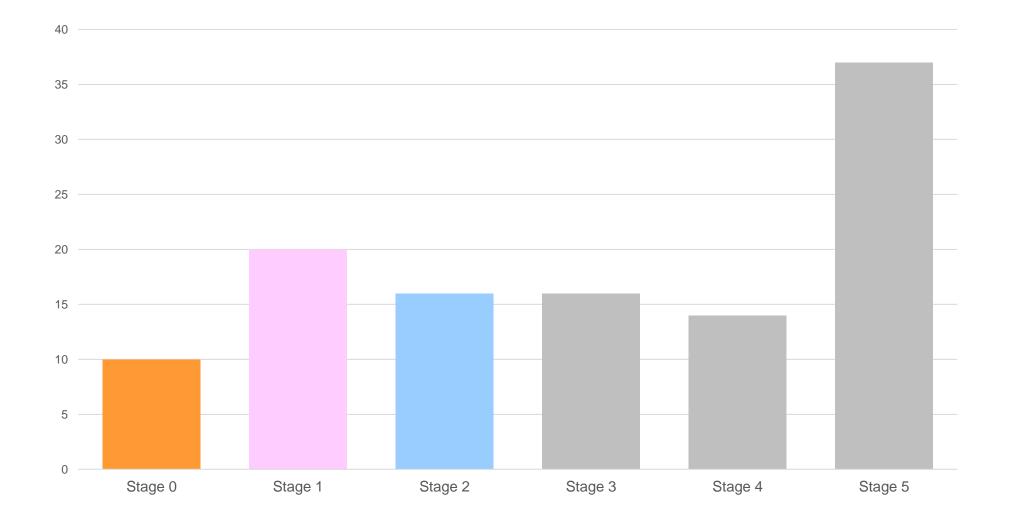

https://www.architectsdeclare.com/

Contents

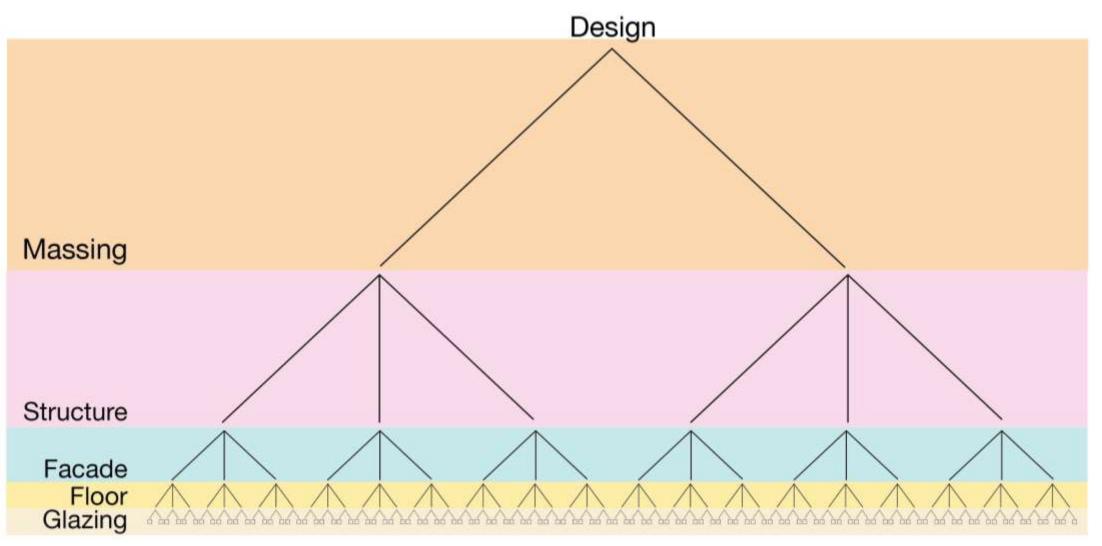

- 1. Route to Zero Carbon
- 2. The role of FCBS CARBON
- 3. Understanding FCBS CARBON
- 4. Demonstration of FCBS CARBON on a project
- 5. Q&A


FCBStudios' Route to Zero Carbon

Scale of FCBStudios



When to make changes?



Scale of FCBStudios

Design Iteration

108 design iterations

FCBS CARBON Approach

Building an accurate Whole Life Carbon model requires a detailed **bill of materials**.

But as designers we need to know the impact of our decisions quickly and BoMs are time consuming.

Instead, we have a library of **standard construction build-ups** that we apply to an **algorithmically described building**.

The role of FCBS CARBON

We developed a tool:

- To record the details of our projects
- To estimate the whole life of our projects
- To understand how our buildings emit carbon

We're focusing on those early stages, where the biggest decisions can be made.

It's currently based in excel so there are few barriers to adoption.

We need to understand **direction** & **magnitude** at the early stages, keeping carbon in the discussion.

An early stage Whole Life Carbon model

Product	Construction											
 P. Raw Material Supply P. Transport R. Manufacturing 	P Transport G Construction	B Use B Maintenance	B Replacement		Operational Water Use	C Demolition		Disposal	D Reuse/ Recovery/ Recycling Potential			
		\rightarrow	\rangle	\rightarrow	\rangle							
							\rightarrow					
					1							

LCA modules included in FCBS CARBON

An early stage Whole Life Carbon model

	Produc	t	Const	ruction			0	peratior	nal				End-o	f-Life		Next-Life
Z Raw Material Supply		& Manufacturing	P Transport	G Construction	esn B1	8 Maintenance	gg Repair	Replacement	gg Refurbishment	B Operational Energy Use	Cperational Water Use	Q Demolition	O Transport	Q Waste Processing	Disposal	D Reuse/ Recovery/ Recycling Potential
	m the lo abase)s			E	Estima	ted a:	s perc	:enta	ge up	lifts or	n A1-A	.3 bas	sed or	n LETI I	ECP	

FCBS CARBON predictions could up as well as down...

FCBS CARBON Structure

Three **input** pages: 0. Project Details 1. Operational Energy 2. Embodied Carbon Two **output** pages: 3. Overview 4. Detailed

START 0. INPUT Project Details 1. INPUT Operational Energy	2. INPUT Embodied Carbon	3. OUTPUT Graphics	4. OUTPUT Graphics	
--	--------------------------	--------------------	--------------------	--

Boxes in yellow are inputs.

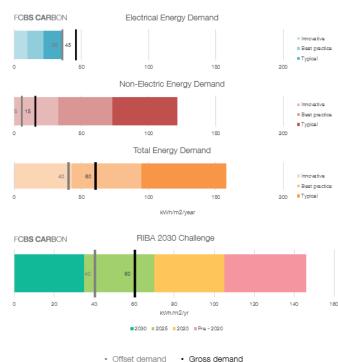
Boxes in **dark blue/grey** are calculated.

0. Input Project Details

FeildenCleggBradleyStudios

Stated environmental objectives: What are the drivers and aims of the assessment? A page to capture global variables and also record other sustainability aspirations.

These global variables must be set otherwise it will generate errors.


There is space for an image if needed.

1. Input Operational Energy

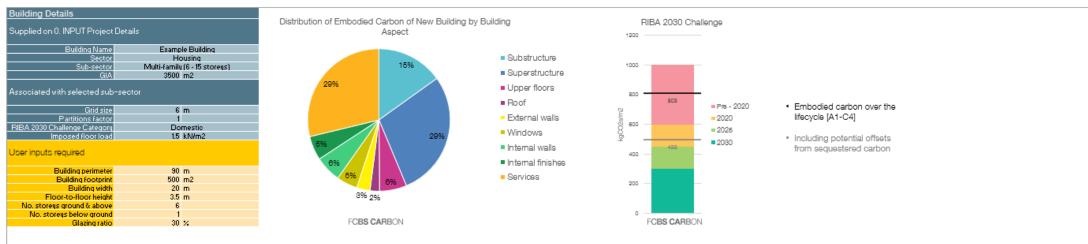
FeildenCleggBradleyStudios

Building Details				
Supplied on 0. INPUT Projec	t Details			
Building Name		Example Build	lina	
Sector		Housing		
Sub-sector	Mult	i-family (6 - 15	storevs)	
GIA		3500		
Subsector Benchmarks				
		kWh/m2/yi		
	Typical	Best Practice	Innovative	Pioneering
Electrical energy	36	22	10	0
Non-electric energy	121	73	33	0
Total energy	158	95	43	0
User inputs required				
Calculation methodology:	Estimate			
Regulated energy use - elec	trian			
	ancai			
Space heating		kWh/m2/yr		
Hot water		kWh/m2/yr		
Cooling		kWh/m2/yr		
Fans and pumps		kWh/m2/yr		
Lighting		kWh/m2/yr		
Other		kWh/m2/yr		
Total	35	kWh/m2/yr		
Regulated energy use - non	-electric			
Heating	15	kWh/m2/yr		
Hot water		kWh/m2/yr		
Other		kWh/m2/yr		
Total	15	kWh/m2/yr		
Anticipated unregulated ener	rgy use - electrica	l.		
Computers		kWh/m2/yr		
Server rooms		kWh/m2/yr		
Appliances		kWh/m2/yr		
Other	10	kWh/m2/yr		
Total		kWh/m2/yr		
Anticipated unregulated ener		,		
Cooking		kWh/m2/vr		
Other		kWh/m2/yr		
Total	0	kWh/m2/yr		
Power generation				
Electrical	10	kWh/m2/yr		
Non-electric (solar thermal et-		kWh/m2/yr		
Total		kWh/m2/yr		
Total	20	Kwriini2i9i		

FCBS CARBON

The operational energy pages requires manual input.

It provides sector benchmarks to help guide your expected energy usage.


If you have a break-down of energy uses, great! But if you don't just put in the headline figures.

The graphs on the right will update with the gross and net energy usage.

2. Input Embodied Carbon

FeildenCleggBradleyStudios

Building Aspect	Building Element	Material	Existing fabric?	Age if existing?	Adjustment Factor(%)	Component Life (years)	Designed for disassembly?	Estimated Quantity	Units	Life cycle embodied carbon estimate A - C (kgCO2e/m2)	A1 - A3 Biogenic carbon (sequestered kgCO2e/m2)	Potential benefits beyond the system boundary D (kgCO2e/m2)	Assumptions	Notes
Substructure	Piles	RC 32/40 (50kg/m3 rein	New			80	No	224.8	m3	34.7	0.0	0.0	15 m depth, 600 mm diameter, 500 kN per pile	
Substructure	Pile caps	RC 32/40 (200kg/m3 re	New			80	No	15.8	m3 👘	3.3	0.0	0.0	0.75 x 2 x 1.5 m caps	
Substructure	Capping beams	RC 32/40 (200kg/m3 re	New			80	No	40.5	m3 👘	8.5	0.0	0.0	750 x 600 mm beam sections	
Substructure	Basement walls	RC 32/40 (125kg/m3 rei	New			80	No	252.0	m3 👘	46.0	0.0	0.0	800 mm wall thickness	
Substructure	Lowest floor slab	RC 32/40 (150kg/m3 rei	New			80	No	150.0	m3 👘	28.8	0.0	0.0	300 mm slab thickness	
Superstructure	Core structure	Precast RC 32/40 (100k	New			80	No	222.2	m3 👘	42.7	0.0	0.0	200 mm wall thickness	
Superstructure	Columns	Steel	New			80	No	6.5	m3	43.6	0.0	0.0	UC 254 x 254	
Superstructure	Beams	Steel	New			80	No	10.8	m3 👘	72.4	0.0	0.0	UB 533 x 210	
Superstructure	Secondary beams	Steel	New			80	No	10.5	m3 👘	70.9	0.0	0.0	75% of material in primary beam	
Upper floors	Floor slab	CLT	New			80	No	600.0	m3 👘	49.6			200 mm slab thickness	
Roof	Roof	CLT	New			80	No	100.0	m3 👘	8.3	-23.4	0.0	200 mm slab thickness	
Roof	Roof insulation	Rockwool	New			30	No	125.0	m3 👘	7.2	0.0	0.0	250 mm insulation thickness	
Roof	Roof finishes	Asphalt (Mastic)	New			30	No	500.0	m2 👘	1.7	0.0		20 mm thickness	
External walls	Facade	Timber	New			40	No	1323.0	m2 👘	5.4	-12.2	0.0	See "Build-ups" sheet	
External walls	Wall insulation	Rockwool	New			30	No	330.8		19.1	0.0		250 mm insulation thickness	
Windows	Glazing	Double Glazing	New			40	No	6.1	m3 👘	18.4	0.0	0.0	Two panes of 6 mm glass	
Windows	Window frames	Al/Timber Composite	New			40	No	2126.3	m	19.8	-2.7	0.0	See "Build-ups" sheet	
Internal walls	Partitions	CLT	New			80	No	578.8	m3 👘	47.8	-135.4	0.0	120 mm wall thickness	
Internal finishes	Ceilings	Exposed Soffit	New			80	No	3500.0	m2 👘	0.0	0.0	0.0	None	
Internal finishes	Floors	Carpet	New		70%	20	No	3500.0	m2 👘	26.4	0.0	0.0	12 mm carpet thickness	
Internal finishes	Floors	Vingl	New		20%	20	No	3500.0		10.2	0.0		3 mm vinul thickness	
Internal finishes	Floors	Stoneware tile	New		10%	20	No	3500.0		7.2	0.0		10 mm tile thickness	
Services	Services	Medium	New			20	No	3500.0	m2 👘	231.0	0.0		60 kgCO2e/m2 flat rate estimate	
								0		0.0				
								0		0.0				
								0		0.0	0.0	0.0		

2. Input Embodied Carbon

FeildenCleggBradleyStudios

FCBS CARBON

Supplied on 0. INPUT Project	Details		
Supplied of to, init of tholeoc	Details		
Building Name		le Building	
Sector		ousing	
Sub-sector		(6 - 15 storeus)	
GIA	3500	m2	
Associated with selected sub	-sector		
Grid size		m	
Partitions factor	1		
RIBA 2030 Challenge Category		mestic	
Imposed floor load	1.5	kN/m2	
User inputs required			
Building perimeter		m	
Building footprint		m2	
Building width		m	
Floor-to-floor height	3.5		
No. storeus ground & above			
No. storeus below ground		••	
Glazing ratio	30	7.	
Substructure		RC 32/40 (50kg/m3 rein	
Substructure			
		Steel Steel CLT	
		Steel Steel CLT CLT	
		Steel Steel CLT CLT Rockwool	
		Steel Steel CLT CLT Rockwool Asphalt (Mastic)	
	Beams Secondary beams Floor slab Roof Roof insulation Roof finishes Facade	Steel Steel CLT CLT Rockwool Rockwool Timber	
		Steel Steel CLT CLT CLT CLT IN CLT CLT Rockwool Asphalt (Mastic) Timber Rockwool	
		Steel Steel CLT CLT Asphalt (Mastic) Timber Rockwool Double Glazing Double Glazing	
		Steel Steel CLT CLT Rockwool Asphalt (Mastio) Timber Rockwool Double Giazinq Al/Timber Composite	
		Steel Steel CLT CLT Rockwool Asphalt [Mastio] Timber Rockwool Double Glazing All/Timber Composite CLT	
		Steel Steel CLT CLT Asohalt (Mastic) Timber Rockwool Double Glazing Al/Timber Composite CLT Exposed Soffit	
		Steel Steel CLT CLT CLT Rockwool Asphalt (Mastic) Timber Bookwool Double Glazing Al/Timber Composite CLT Exposed Soffit Carpet	
		Steel Steel CLT CLT Asohalt (Mastic) Timber Rockwool Double Glazing Al/Timber Composite CLT Exposed Soffit	

The top blue/grey section includes the global parameters from 0. Input, and sector specific assumptions.

The yellow boxes are your specific design:

- Perimeter
- 2. Footprint
- 3. Width

4.

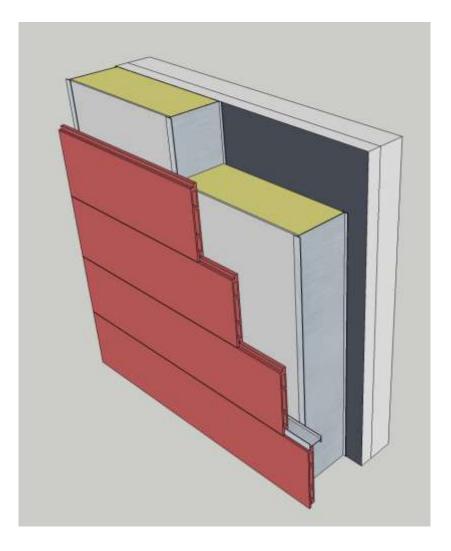
5.

6.

7.

- Floor to Floor Height Storeys above ground Storeys below ground
- Glazing Ratio

2. Input Embodied Carbon

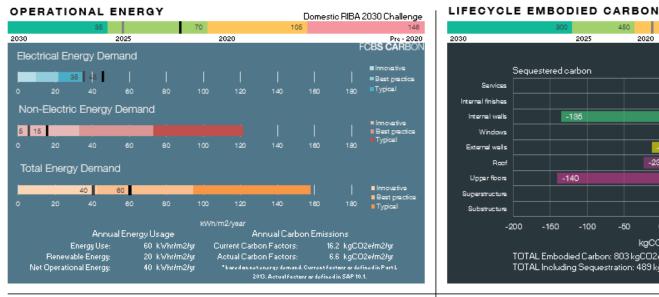

The first three columns are where the material/constructions are assigned to building elements.

The next five columns enable the materials to be tailored further, including lifespan, tagging existing elements, and those designed for disassembly. The blue/grey cells show the calculated data and some of the underlying assumptions.

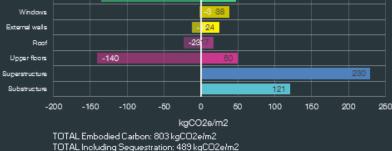
Building Aspect	Building Element	Material	Existing fabric?	Age if existing?	Adjustment Factor (%)	Component Life (years)	Designed for disassembly?	Estimated Quantity	Units	Life cycle embodied carbon estimate A - C (kgCO2e/m2)	A1 - A3 Biogenic carbon (sequestered kgCO2e/m2)	Potential benefits beyond the system boundary D (kgCO2e/m2)	Assumptions	Notes
Substructure	Piles	RC 32/40 (50kg/m3 rein	New			80	No	224.8	m3	34.7	0.0	0.0	15 m depth, 600 mm diameter, 500 kN per pile	
Substructure	Pile caps	RC 32/40 (200kg/m3 re				80	No	15.8	m3	3.3	0.0	0.0	0.75 x 2 x 1.5 m caps	
Substructure	Capping beams	RC 32/40 (200kg/m3 re				80	No	40.5	m3	8.5	0.0	0.0	750 x 600 mm beam sections	
Substructure	Basement walls	RC 32/40 (125kg/m3 rei	New			80	No	252.0	m3	46.0	0.0	0.0	800 mm wall thickness	
Substructure	Lowest floor slab	RC 32/40 (150kg/m3 rei	New			80	No	150.0	m3	28.8	0.0	0.0	300 mm slab thickness	
Superstructure	Core structure	Precast RC 32/40 (100k	New			80	No	222.2		42.7	0.0	0.0	200 mm wall thickness	
Superstructure	Columns	Steel	New			80	No	6.5	m3	43.6	0.0	0.0	UC 254 x 254	
Superstructure	Beams	Steel	New			80	No	10.8	m3 👘	72.4	0.0	0.0	UB 533 x 210	
Superstructure	Secondary beams	Steel	New			80	No	10.5	m3	70.9	0.0	0.0	75% of material in primary beam	
Upper floors	Floor slab	CLT	New			80	No	600.0	m3	49.6	-140.4		200 mm slab thickness	
Roof	Roof	CLT	New			80	No	100.0	m3 👘	8.3	-23.4	0.0	200 mm slab thickness	
Roof	Roof insulation	Rockwool	New			30	No	125.0		7.2	0.0	0.0	250 mm insulation thickness	
Roof	Roof finishes	Asphalt (Mastic)	New			30	No	500.0	m2	1.7	0.0		20 mm thickness	
External walls	Facade	Timber	New			40	No	1323.0	m2	5.4	-12.2	0.0	See "Build-ups" sheet	
External walls	Wall insulation	Rockwool	New			30	No	330.8		19.1	0.0		250 mm insulation thickness	
Windows	Glazing	Double Glazing	New			40	No	6.1	m3 👘	18.4	0.0	0.0	Two panes of 6 mm glass	
Windows	Window frames	Al/Timber Composite	New			40	No	2126.3	m	19.8	-2.7	0.0	See "Build-ups" sheet	
Internal walls	Partitions	CLT	New			80	No	578.8		47.8	-135.4	0.0	120 mm wall thickness	
Internal finishes	Ceilings	Exposed Soffit	New			80	No	3500.0	m2	0.0	0.0	0.0	None	
Internal finishes	Floors	Carpet	New		70%	20	No	3500.0	m2	26.4	0.0	0.0	12 mm carpet thickness	
Internal finishes	Floors	Vingl	New		20%	20	No	3500.0		10.2	0.0		3 mm vingl thickness	
Internal finishes	Floors	Stoneware tile	New		10%	20	No	3500.0		7.2	0.0		10 mm tile thickness	
Services	Services	Medium	New			20	No	3500.0	m2	231.0	0.0		60 kgCO2e/m2 flat rate estimate	
								0		0.0	0.0			
								0		0.0	0.0			
								0		0.0	0.0	0.0		

Curated Components and Materials

Based on previous projects and discussion with consultants and manufacturers, we've created a list of common materials and elements for each building aspect.


These are then modelled using the ICE database where appropriate, or EPDs for certain materials.

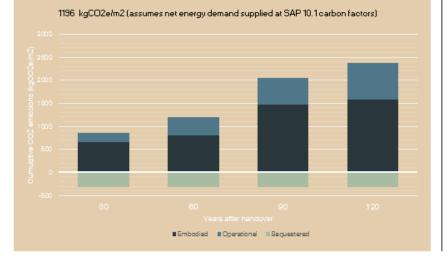
The components may be different to how you would design that element, so do look at the assumptions column.


Interaction of Elements and Parameters

	Piles	Pile caps	Raft	Capping beams	Basement walls	Lowest floor	Core structure	Columns	Beams	Secondary beams	Floor slab	Joisted floors	Roof	Roof finishes	Roof insulation	Facade	Wall insulation	Glazing	Window frames	Partitions	Ceilings	Floors	Services
GIA											Χ	Χ								Χ	Χ	Χ	Χ
Perimeter				Χ	Χ				Χ							X	Χ	Χ	Χ				
Footprint		Χ	Χ			Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ								
Width		Χ						Χ															
Floor-to-floor height					Χ		Χ	Χ								X	Χ	Χ	Χ				
No. storeys ground & above							Χ	Χ	Χ	Χ						Χ	Χ	Χ	Χ				
No. storeys below ground					Χ		Χ	Χ	Χ	Χ													
Glazing ratio																Χ	Χ	Χ	Χ				
Grid size		Χ					Χ	Χ	Χ														
Building load	Χ																						
Partitions factor																				Χ			

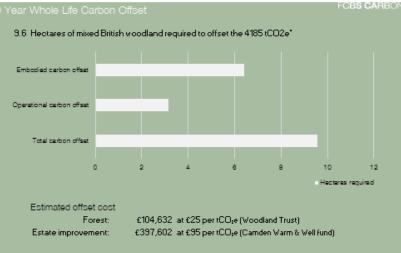
2030 2025 2020 Sequestered carbon Embodied carbon over the lifecycle Services Internal finishes Internal walls 48

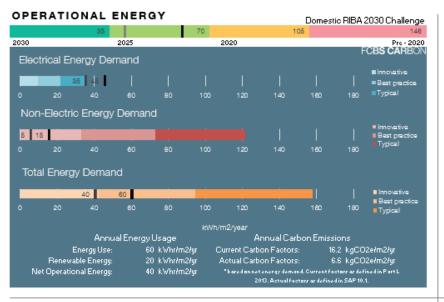
450


600

Domestic RIBA 2030 Challenge

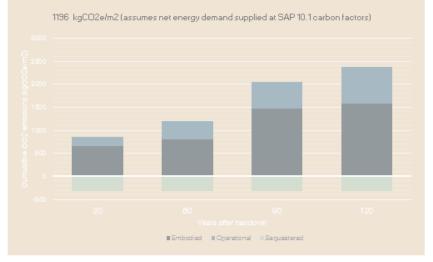
Pre - 2020

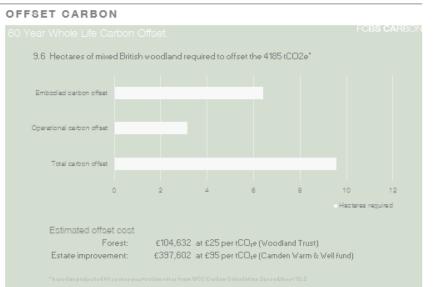

FCBS CARBON


WHOLE LIFE CARBON

OFFSET CARBON

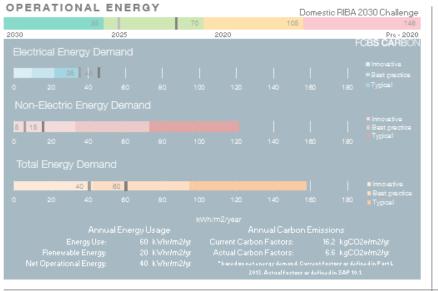
-BS CARBON

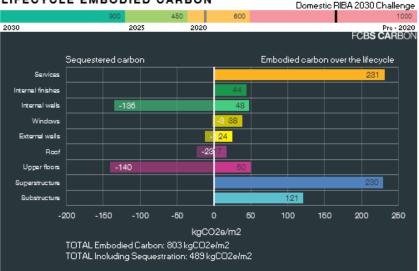

200 450 800 1000 2030 2025 2020 Pre - 2020 FCBS CARBON Embodied carbon over the lifecycle Services 201 201 internal finishes 1186 48 Windows 1186 48 External wals 124 140 Roof 24 140 Upper floors 140 60 Substructure 220 121 Substructure 121 120 COD -160 -50 0 KgCO2e/m2 TOTAL Embodied Carbon: 803 kgCO2e/m2 TOTAL Embodied Carbon: 803 kgCO2e/m2 TOTAL Including Sequestration: 489 kgCO2e/m2


Domestic RIBA 2030 Challenge

LIFECYCLE EMBODIED CARBON

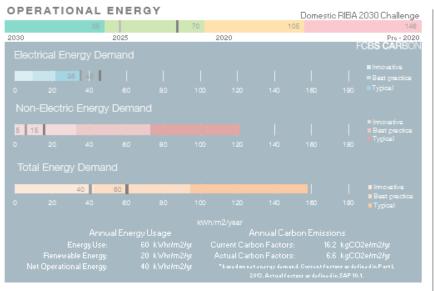
WHOLE LIFE CARBON

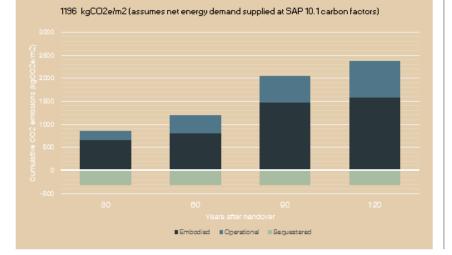

60 Year Carbon Impact


Operational figures are shown as net and gross lines on the charts, enabling comparison with LETI/RIBA/etc. targets.

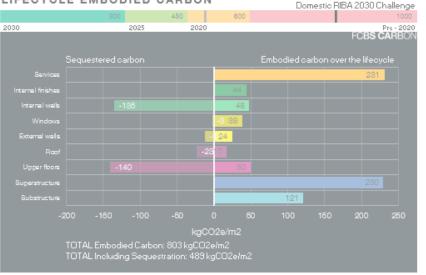
WHOLE LIFE CARBON

LIFECYCLE EMBODIED CARBON


OFFSET CARBON

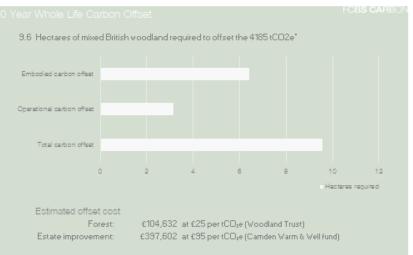

baradan projected 60 year sequertration rates from WCC Carbon Calculation Spreadsheet V2.2 👘

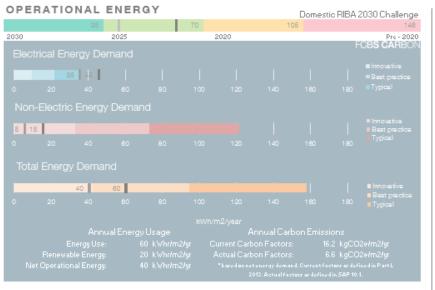
Embodied Carbon figures broken down by building aspect (modules A1-B5 & C1-4) for a 60 year period.



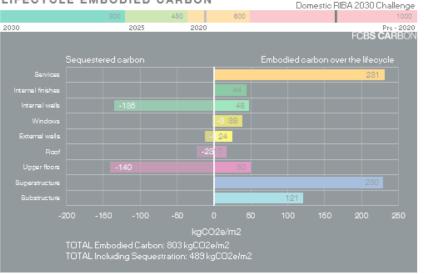
WHOLE LIFE CARBON

60 Year Carbon Impact



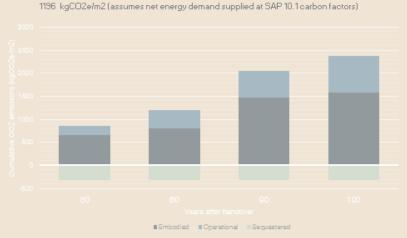

OFFSET CARBON

DES CARBON



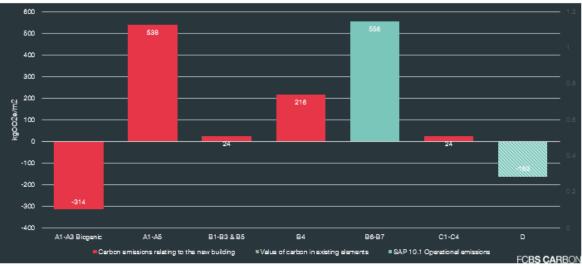
Whole life carbon, with sequestered shown separately.

The figure given is the 60 year total, including any onsite renewables, but not sequestration.

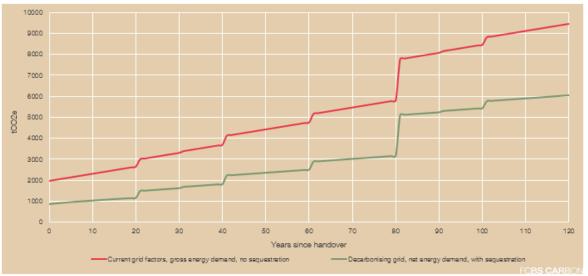

LIFECYCLE EMBODIED CARBON

Indicative offsetting methods, including trees and Camden retrofit program.

WHOLE LIFE CARBON


60 Year Carbon Impact

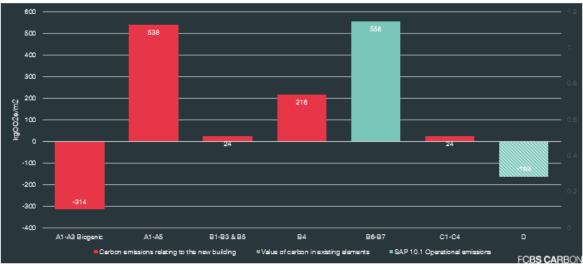
CARBON IMPACT OVER THE LIFE CYCLE AND POTENTIAL BENEFITS



NOTES

Term	Definition	Value (kg	CO2e/m2)				
Embodied carbon to practical completion		538					
Embodied carbon over the life cycle	Comprises stages A1-A5, B1-B5, C1- C4	803					
	Comprises stages A,	A, B&C	D				
Whole life carbon	B & C, with module D reported separately	1359	-163				

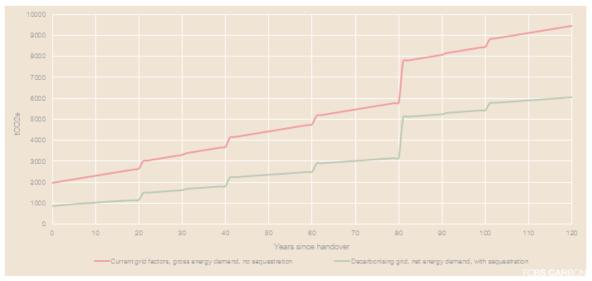
N.B. These totals consider emissions incurred over the life of the current building. The value of carbon in existing elements is therefore not included in the total, but is displayed for information. Biogenic carbon has been excluded from these totals to provide clarity on the unavoidable emissions arising from material use. Operational emissions consider gross demand, as opposed to net demand on 3. DUTPUT. Module D represents potential benefits from the reuse of elements designed for deconstruction, including continued lock-in of biogenic carbon, alongside projected operational savings from on-site generation.


WHOLE LIFE CARBON IMPACT

NOTES

End of life emissions [C1-C4] have been applied at year zero such that reading the graph at any time point will include them. The red line represents the estimate reported elsewhere on this sheet.

CARBON IMPACT OVER THE LIFE CYCLE AND POTENTIAL BENEFITS

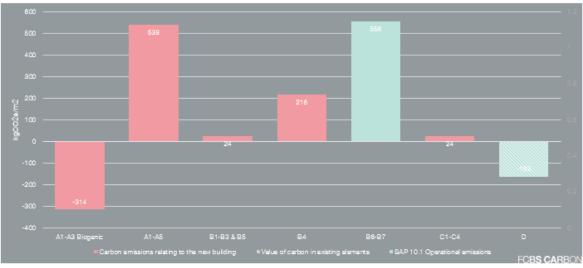


Term	Definition	Value (kg	CO2e/m2)			
Embodied carbon to practical completion	Comprises stages A1-A5	538				
Embodied carbon over the life cycle	Comprises stages A1-A5, B1-B5, C1- C4	81	03			
	Comprises stages A,	A, B & C	D			
Whole life carbon	B & C, with module D reported separately	1359	-163			

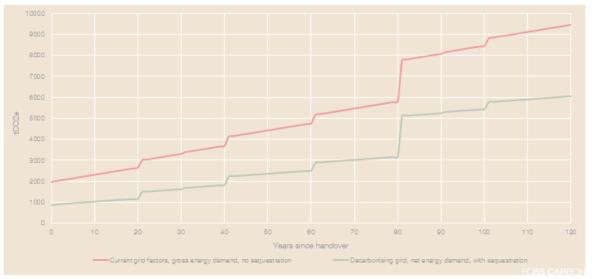
N.B. These totals consider emissions incurred over the life of the current building. The value of carbon in existing elements is therefore not included in the total, but is displayed for information. Biogenic carbon has been excluded from these totals to provide clarity on the unavoidable emissions arising from material use. Operational emissions consider gross demand, as opposed to net demand on 3. OUTPUT. Module D represents potential benefits from the reuse of elements designed for deconstruction, including continued lock-in of biogenic carbon, alongside projected operational savings from on-site generation. A chart showing the carbon emissions by LCA module, including elements that have been reused.

Modelled over 60 years.

WHOLE LIFE CARBON IMPACT


NOTES

NOTES

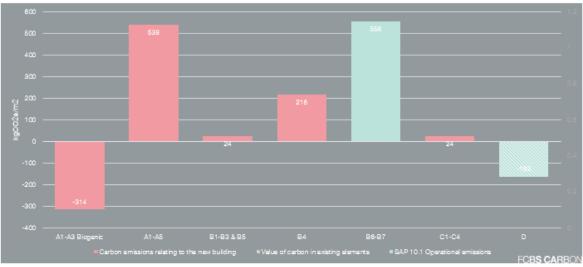

End of life emissions [C1-C4] have been applied at year zero such that reading the graph at any time point will include them. The red line represents the estimate reported elsewhere on this sheet.

CARBON IMPACT OVER THE LIFE CYCLE AND POTENTIAL BENEFITS

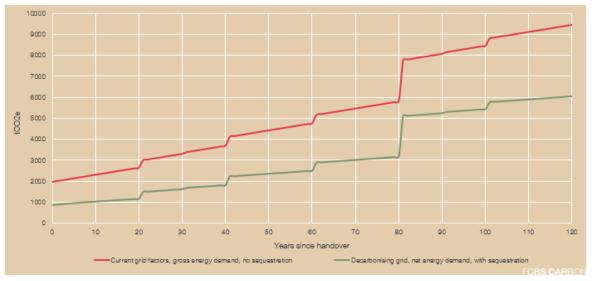
WHOLE LIFE CARBON IMPACT

NOTES

Term	Definition	Value (kg	CO2e/m2)
Embodied carbon to practical completion		5	38
Embodied carbon over the life cycle	Comprises stages A1-A5, B1-B5, C1- C4	8()3
	Comprises stages A,	A,B&C	D
Whole life carbon	Comprises stages A, B & C, with module D reported separately	1359	-163


N.B. These totals consider emissions incurred over the life of the current building. The value of carbon in existing elements is therefore not included in the total, but is displayed for information. Biogenic carbon has been excluded from these totals to provide clarity on the unavoidable emissions arising from material use. Operational emissions consider gross demand, as opposed to net demand on 3. DUTPUT. Module D represents potential benefits from the reuse of elements designed for deconstruction, including continued lock-in of biogenic carbon, alongside projected operational savings from on-site generation.

NOTES


End of life emissions [C1-C4] have been applied at year zero such that reading the graph at any time point will include them. The red line represents the estimate reported elsewhere on this sheet. Detailed breakdowns of the contributions by each module for ease of reference.

CARBON IMPACT OVER THE LIFE CYCLE AND POTENTIAL BENEFITS

WHOLE	LIFE	CARBON	IMPACT
THUR DE L		0/11/0/01	

NOTES

Term	Definition	Value (kgCO2e/m2)	
Embodied carbon to practical completion	Comprises stages A1-A5	538	
Embodied carbon over the life cycle	Comprises stages A1-A5, B1-B5, C1- C4	803	
Whole life carbon	Comprises stages A, B & C, with module D reported separately	A, B & C	D
		1359	-163

N.B. These totals consider emissions incurred over the life of the current building. The value of carbon in existing elements is therefore not included in the total, but is displayed for information. Biogenic carbon has been excluded from these totals to provide clarity on the unavoidable emissions arising from material use. Operational emissions consider gross demand, as opposed to net demand on 3. OUTPUT. Module D represents potential benefits from the reuse of elements designed for deconstruction, including continued lock-in of biogenic carbon, alongside projected operational savings from on-site generation.

NOTES

End of life emissions (C1-C4) have been applied at year zero such that reading the graph at any time point will include them. The red line represents the estimate reported elsewhere on this sheet. Two lines are shown, representing best and worst cases. Red line shows no sequestration, no renewables, and a static carbon factor for energy.

Green line include sequestration, renewables, and future emission scenarios.

Note C1-4 is included in year 0 to enable WLC to be read at any year.

Demonstration of FCBS CARBON

Inputting data into the tool and making changes

https://fcbstudios.com/fcbscarbon

Thank you

Please send feedback to: joe.jack.williams@fcbstudios.com

