

Looking Up Identifying energy and carbon savings in flat roofs

Decarbonisation & net-zero

- COP26
- 68% reduction in Greenhouse Gas (GHG) emissions by 2030
- Future Homes standard/Future buildings standard
- Heat in building strategy
- '100% green electricity' by 2035
- Approximately 43% of UKs energy usage is in buildings

Decarbonisation & net-zero

- COP26
- 68% reduction in Greenhouse Gas (GHG) emissions by 2030
- Future Homes standard/Future buildings standard
- Heat in building strategy
- '100% green electricity' by 2035
- Approximately 43% of UKs energy usage is in buildings
- Wholesale energy prices 'up 250% since January'

CONSIDERING CO₂ AND ENERGY LOSS A fabric first approach?

Increasingly important to consider how we can reduce CO₂ emissions and energy costs to heat and cool buildings

The refurbishment of poorly insulated flat roofs can have a considerable benefit in terms of energy savings and so reduce CO² emissions.

By utilising the roof area to house a solar PV array the benefits are even more significant.

First, you need to know how your existing roof is performing – Here's how you can find out.

TYPICAL WARM ROOF DESIGN Verifying true thermal performance

AVCL – Forms a secondary waterproofing

Water ingress contained in insulation

TYPICAL WARM ROOF DESIGN Verifying true thermal performance

Insulation slowly absorbs water

Roof may not show any signs of a defect

How can Bauder help?

Combined, value added approach for refurbishment clients

= Verified carbon and financial savings for every roof refurbishment project

PRINCIPLES OF THE SERVICE OFFER What are the objectives?

TECHNOLOGIES BEHIND THE SERVICE How does the data come together?

MOISTURE MAPPING

Concrete deck

Carbondash Calculating the benefit of additional insulation

- Provides:
 - Energy savings
 - CO₂ saving
 - Financial saving
- SBEM based data
- Provides EPC projection

Carbondash Calculating the benefit of additional insulation

- Provides:
 - Energy savings
 - CO₂ saving
 - Financial saving
- SBEM based data
- Provides EPC projection

CARBON DASHBOARD

Elmsleigh Infant School

Community funded solar PV array

- 50kWp
- Zero capital outlay
- Zero maintenance
- Financial savings in yr $1 = \pounds 1,770$
- Total saving in yr 1 (insulation + solar PV) = \pounds 3,393
- 50% Carbon saving

SOLAR Photovoltaic (PV) OVERVIEW

SMART, FUTURE-PROOF, DECENTRALIZED ENERGY SYSTEMS

SOLAR PV The business case

1. This is free

- 2. Get paid for what you export (hopefully)
- 3. Use less from the grid

PROJECTED ROI Typical secondary school

- 150kWp solar array
- 80% self consumption
- Paying 22.5p/kWh for electricity
- Savings year 1 £23,800
- 20 year savings £717,000
- 5 year payback

BAUDER

DESIGN CONSIDERATIONS The roof

Existing roof conditions

Membrane durability

Structural stability

ANCHORING METHOD

MECHANICAL Penetrating fixings

Any penetration is a risk

MECHANICAL Non- penetrating

BALLASTED Additional weight loading

SHADING ITEMS Maximising output

This Layout is based on the given information. For a more detailed engineering, more information about the roof and nearby objects are necessary.

BAUDER Ltd. 70 Landseer Road Ipswich, IP3 0DH

DESIGN CONSIDERATIONS Location

PLANNING CONDITIONS

WIND LOAD IMPACT

VISIBILITY & UNWANTED ACCESS

BAUDER

MAINTENANCE

- Cleaning of modules
- Inspection of electrical system
- Inspection of mounting system and fixings
- Audit energy production
- Achieve maximum performance.

BAUDERSOLAR

9 – 12.5Kg/m²

Zero penetrations

Quick Installation

340Wp – 460Wp

UNIVERSITY OF WEST ENGLAND

12,000 Sq m area for PV, 12Kg/m²

Single ply waterproofing system

1,713 BauderSOLAR PV modules

402 Megawatt hours

Generates 50% of building's energy

Roof refurbishment and retrofit PV array

11 FREEBOURNES ROAD

5200 m² bitumen membrane system

588 modules generate 134.7MWh/yr

Weight load restrictions

Single source supply

All-inclusive guarantee

BIOSOLAR Combining biodiverse roofs with PV

Water attenuation, biodiversity habitat and renewable energy

Funding:

Various policies currently in place including:

- PSDS <u>https://www.gov.uk/government/collections/public-sector-decarbonisation-scheme</u>
- SHDF <u>https://www.gov.uk/government/publications/social-housing-</u> <u>decarbonisation-fund/social-housing-decarbonisation-fund-questions-and-answers</u>
- Solar specific:
 - Schools energy coop
 - Solar for schools
 - Eden sustainable

YOUR QUESTIONS?

