

PASSIVHAUSA Contractor's Perspective

DOVEHOUSE COURT, GIRTON, CAMBRIDGE

ABOUT US

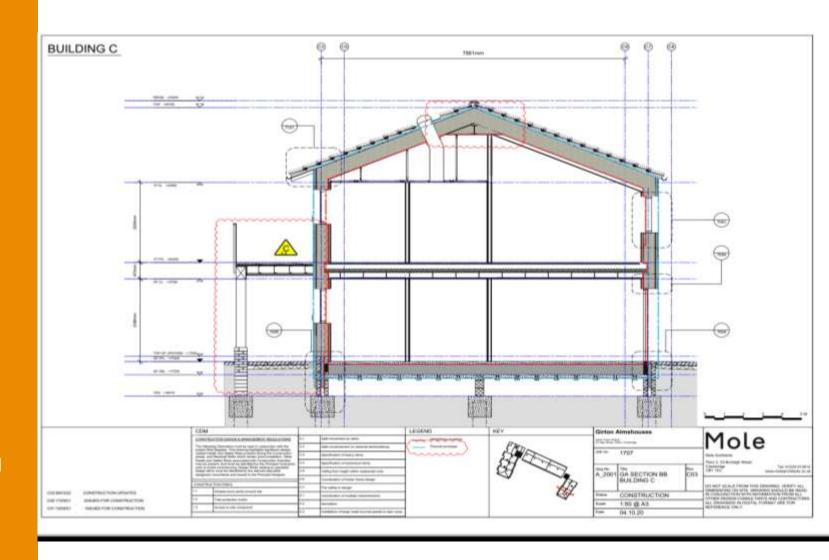
- Established in 1978 as a local family-owned building contractor
- Work in all sectors Healthcare, Leisure, Education, Commercial and Residential
- Bidding for Passivhaus projects but managing business risk
- Key pillars of our business based on:
 - ■Sustainability long term strategy for everything we do
 - •Collaboration- basing our business approach on excellent teams
 - •Innovation- looking to improve our process and approach through innovative thinking
- Over 75% of our work is repeat-business or negotiated

Girton TownCharity

- The first mention of GTC is in The Victoria County History which can be traced back to a bequest in 1521 by William Collyn
- Land sold in 2003 for development raising significant funds and enabled exciting changes for the charity
- Consists of 7 Trustees
- Portfolio of 28 alms-houses
- GTC run several charitable schemes for the residents of Girton

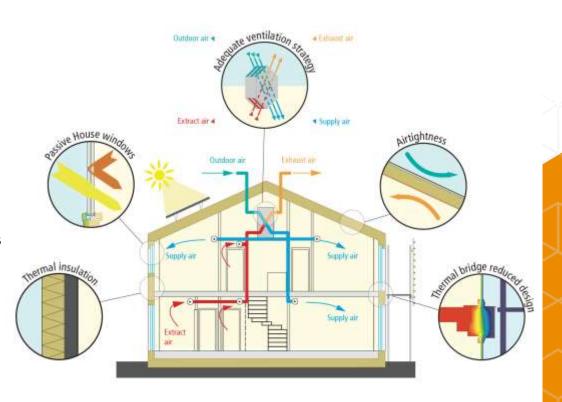
PROJECT BRIEF

- Procurement route Single stage design and build
- Demolish existing GTC office (bungalow) and develop the site of the 6 former bungalows
- Create 15 passivhaus alms-houses and new office facility - Scheme wasn't compliant at tender stage
- 3 separate blocks
- Mix of bungalows and 2 storey buildings approx. 55m2 /180sqft per unit
- Details external works communal garden, car parking and relocation of existing sub-station.
- Value Circa £5m



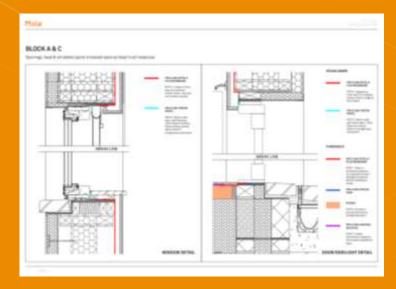
CONSTRUCTION METHODOLOGY

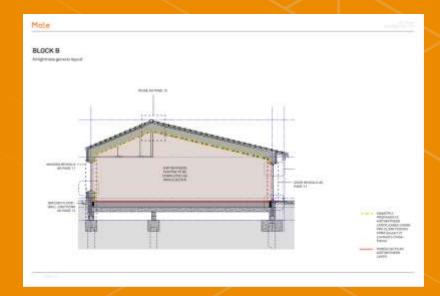
- CFA piles with ring beam foundations
- ◆ Block and beam floor
- Traditional timber frame
- Floor and roof panel cassettes
- Passivhaus certified windows and doors
- Clay roof tiles
- ◆ External steel frame staircase
- Hybrid solution of metal and timber glulam external walkways
- Lightweight stud partitions
- Mix of flat and vaulted ceilings
- 300mm of floor insulations with 75mm screed
- External render on 75mm wood fiber Insulation
- Insulation pumped into timber frame

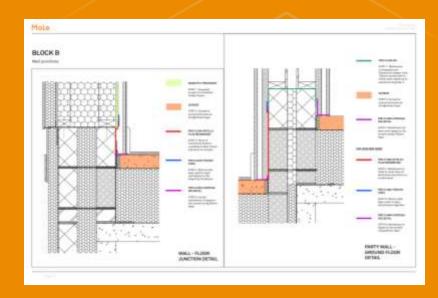


PRE-CONSTRUCTION CRITICAL ACTIVITIES

- Development of key stakeholders' management plan
- Understanding Passivhaus principles
- What is a Passive House Planning Package (PHPP model) and how is this effected, material selection, cold bridging etc
- Early appointment of MEP contractor to feed into the model
 Solar Thermal change to ASHP for compliance
- Timber fraction consideration before completion of design
- Air testing requirements and decisions on how to test in blocks
- Training required for the team and business "Certified Passive House Tradesperson" Engaging with passivhaus certifiers
- Appointing a Passivhaus Champion


AIR TIGHTNESS STRATEGY


- Design teams responsibly to produce an air tightness strategy for construction the document we received was very good.
- Two different strategies to meet fire regulations during construction for spread of flame, STA 16 steps to fire safety, close proximity of neighbouring properties
- Bungalows pro-passive board to walls
- ◆ Two storey elements membranes Pro Clima Intello
- Airtight lines/ locations



THE BUNGALOWS

- Different strategy for the bungalows
- Horizontal and vertical steps (floor levels, wall and roof lines)
- Liquid screed with airtight line taped at wall junction, tapes can become damaged easily.

PRODUCTS USED

Mole

BLOCK B

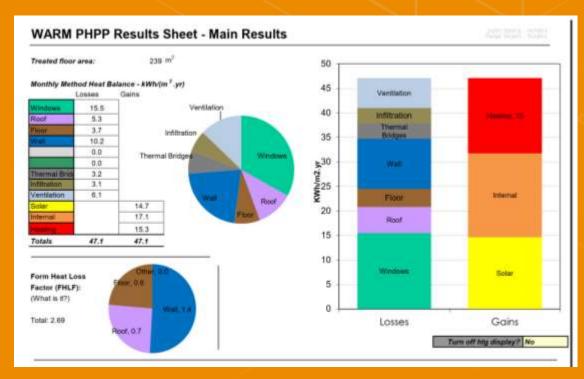
Products used

Line type on standard details	Product name & Spec code	Product image	Description	Installation
_	Pro Clima Intelio Plus P10/312		intelligent hydrocafe airtight sapour control membrane to be used in the opening reveals and between the StraitPly ProPasals and screed.	
_	Pro Clima DA P10/311		Robust airtight internal vapour control membrane and air harries with ascellent weather resistant properties. To be used between blockwork and timber frame.	
_	Pro Clima Teacon Profil P10/2138	2	Airtight adhesive tage for use on comers and junctions. The tage has a apilt backing of 12mm (lattached to the window frame) and 48mm (attached to the membrane).	

Mole

BLOCK B

Products used (continued)


_	Pro Clima Teacon Vana P10/313C	Multi-purpose sirtight adhesive tape used for membrane joins, as well as for joins in the SmartPly Propassiv between purels.	MEANING 3 LANS.
-	Pro Clima Contago Solido SL P10/3134	Aistight tape for meaoury to membrane connections, door and window seeling tape. Used between the screed and Pro Care Intolio Plus and to tape the Intelio Plus to blockwork.	
	Pro Clima Tescon Sprinter au P10/316	Spray primer to be used on all surfaces defore tapes are applied	

EVIDENCING AND FEEDING INTO PHPP MODEL

- ◆ The PHPP model is the most important tool in successfully achieving Passivhaus certification Fact!
- Designated individual by the architect to manage the model, approx. approx. 580hrs of architect teams time attributed to working specifically on the PHPP or certification process from stage 4 onwards
- Bungalows particularly difficult to certify due to the external surface area Vs apartments (upgraded insulation with additional south glazing)
- ◆ SAP calcs not required as the PHPP model is far more complex. However, PHPP can't be used to produce EPC
- PHPP model can affect structural solutions.
- Actual timber fractions used feed in very late in the process

100	Treated floor area m²	238.5		Criteria	Alternative criteria	Fullfilled? ²
Space heating	Heating demand kWh/(m²a)	15	\$	15	-	wan
	Heating load W/m²	9.82	s	-	10	yes
Space cooling	Cooling & dehum, demand kWh/(m²a)	-	\$	-	-	1 20
	Cooling load W/m²	-	≤	9	-	
Fr	equency of overheating (> 25 °C) %	3	5	10		yes
Frequency of exc	essively high humidity (> 12 g/kg) %	0	s	20		yes
Airtightness	Pressurization test result n ₅₀ 1/h	0.6	\$	0.6		yes
Non-renewable Primar	y Energy (PE) PE demand kWh/(m²a)	128	\$			
201 1921	PER demand kWh/(m²a)	56	≤	60	60	i i
Primary Energy Renewable (PER)	Generation of renewable energy (in relation to pro- kWh/(m²a) jected building footprint area)	0	2	-	-	yes
	A.			100000047240000	*Empty field: De	ta missing, '-' No requirem
	given herein have been determined following the		nd based on the c	haracteristic	Passive House Class	sic? yes
values of the building. Th Task	ne PHPP calculations are attached to this verifica First name:	tion.		Surname		Signatu
		Issued on:		Otv		

CONSTRUCTION PHASE – WHAT WE DISCOVERED...

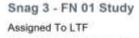
DETAILING

- Step details at sub-structure, facade and roof lines caused real difficulties
- Membrane Vs Pro-passive board robust detailing
- Insulation operation cutting through airtight and fire line
- Managing cold bridging, access for duct work and actual space available
- Vent strategy through chimney's
- Fire rated ground floor ceiling
- Passivhaus certified windows and doors
- External service risers
- Damage to airtight lines and repairs required

HOW IS THIS MANAGED

- Role of the Passivhaus Champion
- Penetration logs
- Record keeping
- Uploading information to portal
- ◆ If there's no evidence, it didn't happen!!

Assignee Lowfield Timber Frame Block A 1st floor - warmcell penetration


190

2.01 - Insulation performance
Assigned To Birch Screeding
150mm Jabilte Floor Insulation

Snag 2 - FN01 Study Assigned To LTF Hole in membrane, needs taping

Incorrect detail, intello plus membrane should finish flush with screed and the Contega taped from screed to intello membrane

	Barnes Construction Disembase Coset Streegery (Nutriending work tone Date 51-52-32) Mer 2			Barnes				
-	Linea	-	school	-	America America	200	- Innere	-
*		Self-self-of System Stationard array	pit sine		***	****		
	**	hat are found for one any	r+:				1961	
*	**	and the country of the lattice of the date of the	-	H-100		-		
4		Modes of the sector						

AIR TIGHTNESS PERFORMANCE

- Opted for a 2-test strategy, pre fit out and on completion
- Not every detail drawn and change of airtight line caused a real problem with party walls
- Airtight manual not updated during construction – ridge beam issue linked to cold bridging
- Pass test result of 0.6 air changes per hour or less required
- First test results...
- Difficulties and challenges... and our process of elimination
- Failed tests and remedials
- Use of an anemometer
- Difference in performance of membrane Vs Pro-passive board
- Advise building performance will tighten up post-plaster, render, mastic etc
- Relatively poor sub-contractor buy-in to passivhaus requirements despite discussions

Test Results Pass

Target:	<= 1.00	m h m @50Pa	Air Permeability:
Air Flow Coefficient (Cenv):	49.000	m'.h '•Pa'	
Air Leakage at 50 Pa (Q ₅₀):	0.146	m³.h ¹	0.59
Air Flow Exponent (n):	0.60		U_39 _{m².h².m²@50Pa}
Coefficient of Determination (r2):	0.984		m.h.m-@50Pa

This is to certify that the above name building has been tested by a registered provider in accordance with ATTMA TSL1, TSL2 or TSL3 subject to the above statements regarding temporary sealing and deviations from these test standards.

This certificate is a short form report. If a full compliant report is required please contact the company that issued the certificate. Enquiries about this certificate should be made to: Scheme Manager, ATTMA, Unit 3, Tannery Road, Loudwater, Buckinghamshire, HP13 7EQ or visit www.bcta.group/attma/

9SNB-SI64-5633

M&E INSTALLATION

- Combined approach for M&E with passivhaus experience
- Co-ordination of services within a small structure especially from the chimneys, duct sizing once lagged.
- Builders work detailing required upfront to ensure safe passage of services without hindering architectural features, ceiling heights etc
- MVHR by Zehnder/Comfo air supply and extract 25lps
- ASHP Dimplex Edel 200 UK hot water pump and cylinders
- Collating evidence for PHPP model
- Allowing for excessive insulation grouping together for lagging
- Noise break out should be expected and acoustic cupboard doors considered units exceed 25db allowance
- ◆ MVHR and ASHP will leak air during air testing
- ♦ ASHP used to get the scheme compliant

LATE CHANGES

Passivhaus certifiers change in approach to the Office...

- The office was outside of the passivhaus assessment as it had its own thermal envelope.
- Part of the assessment was due to occupancy levels being different to that of a residential property
- Originally design for conventional bathroom extract
- Unfortunately, WARM changed their advice given at the start of the project, suggesting it's not possible to leave this element out of the assessment
- ◆ Air test result…
- WARM accepted that we can't make changes to the fabric at this late stage and asked us 'to do the best we can in the spirit of Passivhaus'.
- Installation of Passivhaus certified MVHR system
- Considerable delays and buildability issues

//////

LESSONS LEARNT

- Certified timber frame suppliers are limited and very expensive, cost increase led to our tendering contractor pulling out of the project leaving us with a significant cost increase
- Carryout our own air testing (in house) and air test between individual trades if programme allows
- Airtight membrane ballooning pro-passive board preferred option
- Passivhaus certified products aren't airtight (windows)
- What happens when the floor screed cracks?
- Space required on site for additional thickness of insulation/materials
- Every lap in tape will leak air
- The weather can affect the ability of tapes
- ◆ Try and avoid/design out step junctions
- Thermal bridging issues with walkways resulting full redesign and considerable costs

LIVING IN AND OWNING A PASSIVHAUS BUILDING

Resident – "The areas are spacious, light and airy, following the recent hot weather internally the building has remined cool"

Resident – "I was concerned hearing that all services run off electric supplies, but the usage is so minimal my costs are considerably cheaper than my previous property"

Ann Bonnett, Chair of GTC said: "This is a major milestone for us, we are delighted to have now taken ownership of Dovehouse Court and after many years, seen our plans to future proof housing in our Village come to fruition. I'd like to thank all the contractors who worked on the site for doing such a splendid job over the last 15 months as well as my fellow Trustees

OTHER FORMS OF PASSIVHAUS WE HAVE BEEN INVOLVED IN

SELWYN COLLEGE NEW COURT

- Supposedly designed to ENerPHit Passivhaus standards
- Major concerns raised during tender process due to lack of detailing
- Non passivhaus certified products specified
- No cold bridge assessment
- Products specified without actual knowledge of product limitations such as wood fibre, lime render etc
- Our knowledge on passivhaus construction saved this project from disaster

THANK YOU FOR LISTENING